Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses.
نویسندگان
چکیده
Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that contributes to tolerance in a number of biological settings. In cancer, IDO activity may help promote acquired tolerance to tumor antigens. The IDO inhibitor 1-methyl-tryptophan is being developed for clinical trials. However, 1-methyl-tryptophan exists in two stereoisomers with potentially different biological properties, and it has been unclear which isomer might be preferable for initial development. In this study, we provide evidence that the D and L stereoisomers exhibit important cell type-specific variations in activity. The L isomer was the more potent inhibitor of IDO activity using the purified enzyme and in HeLa cell-based assays. However, the D isomer was significantly more effective in reversing the suppression of T cells created by IDO-expressing dendritic cells, using both human monocyte-derived dendritic cells and murine dendritic cells isolated directly from tumor-draining lymph nodes. In vivo, the d isomer was more efficacious as an anticancer agent in chemo-immunotherapy regimens using cyclophosphamide, paclitaxel, or gemcitabine, when tested in mouse models of transplantable melanoma and transplantable and autochthonous breast cancer. The D isomer of 1-methyl-tryptophan specifically targeted the IDO gene because the antitumor effect of D-1-methyl-tryptophan was completely lost in mice with a disruption of the IDO gene (IDO-knockout mice). Taken together, our findings support the suitability of D-1-methyl-tryptophan for human trials aiming to assess the utility of IDO inhibition to block host-mediated immunosuppression and enhance antitumor immunity in the setting of combined chemo-immunotherapy regimens.
منابع مشابه
Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملIndoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.
BACKGROUND The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased im...
متن کاملIndoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN-γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolongs...
متن کاملHIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells.
Infection with the human immunodeficiency virus type-1 (HIV) results in acute and progressive numeric loss of CD4(+) T-helper cells and functional impairment of T-cell responses. The mechanistic basis of the functional impairment of the surviving cells is not clear. Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that inhibits T-cell proliferation by catabolizing the essential ...
متن کاملThe indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation.
Human plasmacytoid dendritic cells (PDCs) can drive naive, allogeneic CD4(+)CD25(-) T cells to differentiate into CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). However, the intracellular mechanism or mechanisms underlying PDC-induced Treg generation are unknown. In this study, we show that human PDCs express high levels of IDO, an intracellular enzyme that catabolizes tryptophan degradation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 67 2 شماره
صفحات -
تاریخ انتشار 2007